336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

제 개인적인 생각으로는 물리기반렌더링(Physically Based Rendering/Shading, 이하 PBR,PBS)이 2016년 국내 게임 시장의 중요 키워드 중 하나가 아닐까 생각합니다.  모바일 기기의 성능들이 많이 발전하고 특히 국내에는 고사양 폰의 보급률이 높아짐에 따라 모바일에서도 PBR을 사용하는 움직임들이 많이 보이고 있습니다. 유니티에서는 스탠다드(Standard) 쉐이더를 통해서 PBR을 처리해주고 있습니다. 이 스탠다드 쉐이더는 유니티5에 적용된 인라이튼(Enlighten)과 연동하여 실시간 GI(Global Illumination) 및 물리 기반 라이팅을 표현해줌으로써 더욱 사실적이고 멋진 그래픽을 표현할 수 있도록 해줍니다. 

하지만 PBS는 복잡한 연산을 거쳐서 빛을 표현해주어야 하다보니 성능을 크게 잡아먹습니다. 물론 게임에서는 이를 나름 간략화 시켜서 사용하고, 유니티 역시 스탠다드 쉐이더에 이를 최적화하여 적용합니다. 또한, PC에서 수행하면 PC용 모드의 스탠다드 쉐이더로 수행되고 모바일 기기에서 수행하면 모바일용으로 더 최적화된 모드의 스탠다드 쉐이더로 수행됩니다. 이 역시 버전을 거듭할 수록 계속 최적화가 진행중입니다. 하지만, 기본적으로 연산 자체가 복잡하기 때문에 씬 전체를 스탠다드 쉐이더로 사용하는 것은 아이폰5, 아이패드에어, 넥서스9 급 이상의 하이엔드 기기를 타겟으로 사용하는 경우에만 권장합니다.

고사양 기기가 많이 보급되어 있긴 하지만 아직도 저사양 폰들이 시장에 많이 존재합니다. 이러한 기기들에서는 씬 전체를 스탠다드 쉐이더로 그리는 것은 무리입니다. 하지만, 스탠다드 쉐이더를 부분적으로만 사용한다면 충분히 보급형 기기에서도 이를 활용 할 수도 있습니다. 예를 들어, 케릭터에게만 스탠다드 쉐이더를 사용하고 배경에는 다른 가벼운 쉐이더를 사용하는 것입니다. 다음 이미지에서는 그러한 예시를 보여주고 있습니다. 로보트들과 드론들에게는 스탠다드 쉐이더를 사용하였고 배경에는 Mobile/Unlit (Supports Lightmap) 쉐이더를 사용하였습니다. 갤럭시 S3에서 60 이상의 FPS로 렌더링 되고 있습니다. 데모를 구글플레이에 올려두었습니다. 다운로드 받아서 확인 가능하십니다. 

링크 : https://play.google.com/store/apps/details?id=com.ozproject.demo2

사용 에셋 : Armored Golem, Sci-fi Flying Droid, Mech Robot Sci-fi, Orbital Reentry Craft - No Interior ( 제가 아트감각이라고는 빵점인 공돌이라 비쥬얼 퀄리티가 좋지 못한 점 너른 양해 부탁드립니다;; )

또한, 저사양 기기에서 스탠다드 쉐이더를 사용하기 위해서는 텍스쳐 슬롯을 가능한 아껴주는 것이 좋습니다. 사용되지 않는 텍스쳐 슬롯은 스탠다스 쉐이더가 알아서 연산을 건너뜀으로써 성능을 절약하 수 있습니다.

예를 들어 다음 우주선은 Emission 맵을 사용하지 않았습니다.

드론에게는 노말맵을 사용하지 않았습니다.

골렘 로보트에게는 Metallic맵을 사용하지 않고 수치로써 단순하게 적용하였습니다.


이러한 식으로 스탠다드 쉐이더를 선택적으로 사용하고 파라미터를 절약한다면 저사양 기기에서도 충분히 스탠다드 쉐이더를 통한 PBR을 사용할 수 있습니다. 감사합니다.


Posted by ozlael
,
336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

Unity5로 리메이크한 Republique가 에셋스토어에 올라왔습니다. 그와 함께 유니티 공식 블로그에 "THE REPUBLIQUE REMASTERED IN UNITY 5 LEARN PROJECT IS HERE!"라는 글이 함께 올라왔습니다. 이 글은 유니티 공식 블로그의 글을 번역한 글입니다.

몇 달 전 Camouflaj에서 Remastering Republique: The Journey to Unity 5라는 주제로 영상 및 글을 올렸습니다. 또한 이제는 프로젝트의 일부를 에셋스토어에 공유하였습니다. 이를 통해서 Unity5를 실제 게임에서 어떻게 활용 할 수 있는 지를 확인할 수 있을 것입니다.

이 프로젝트 파일에는 교도소, 중앙 홀, 터미널 등 여러 공간이 포함되어 있습니다. 이를 통해서 리플렉션 프로브, Enlighten, 새로운 에니메이션 및 오디오 기능 등 Unity5의 기능들이 어떻게 사용되고 있는 지 확인할 수 있습니다.


ENLIGHTEN

Republique의 중앙 홀은 스튜디오에서 Unity5로 작업 한 첫번째 공간입니다. 우리(Camouflaj)는 Enlighten을 통해서 매우 놀라운 개선을 이를 수 있었습니다. 특히 씬의 천장에서 내려오는 빛은 매우 큰 효과를 보여주었습니다.


발광(Emissive) 재질은 Unity5에 추가된 것 중 하나입니다. 형광등 재질의 발광 강도(Emission intensity)를 증가시킴으로써 반사광을 만들어 씬을 밝게 조절하는 것을 보실 수 있습니다. continuous baking을 활성화시키면 즉각적으로 결과를 확인하게 됩니다. 이로써 라이팅 작업 시간을 매우 줄일 수 있게됩니다.

다음 이미지는 Emission 값을 보여주고있습니다. 이는 에니메이션 트랙을 추가하여 값을 네이메이션 시킬 수 있습니다. (역주:예를 들어 형광등의 깜빡임 등)

라이팅 탭의 간접광 강도(Indirect Intensity)를 증가시킴으로써 씬이 동적으로 업데이트되고 한층 밝아지는 것을 확인할 수 있습니다. 이는 실시간으로 보여지고 있습니다.

리플렉션 프로브는 주변 환경을 반사시킴으로써 실제같은 금속을 만들 수 있게 해줍니다. 

다음 이미지의 기둥의 표면은 금속으로 되어있습니다. 반사력(reflectivity)를 높임으로써 공간적으로 정확한 반사를 얻을 수 있습니다.

아래 이미지와 같이 부드러움(smoothness)을 줄이면 반사 이미지는 거칠어지고 흐려집니다. 


UNITY5 AUDIO

유니티5의 오디오 믹서는 오디오를 분류하고 출력 버스를 특정지을 수 있습니다. 이로인해 오디오를 더욱 유연하게 전송하고 혼합할 수 있습니다.  ‘Ambience’그룹은 2D와 3D 서브 그룹으로 나뉩니다. 자연적으로, 3D 환경 오디오는 3D 서브 그룹으로 전송되고, 3D 버스로 할당된 오디오는 알맞는 그룹으로 연결됩니다. 각각의 그룹에서는, 볼륨(volume)과 피치(pitch)를 조절할 수 있고 오디오 필터가 적용됩니다. 또한, 개별적 혹은 전체적으로 그룹들을 실시간으로 음소거 시키거나 독주화 시킬 수 있습니다. 오디오 믹서 우측 상단의 ‘Edit on Play Mode’를 클릭하면 게임이 실행되는 동안에 편집이 가능합니다. 그 예로 우리는 게임이 실행되는 동안 ‘SFX Reverb’를  추가하여 발자국을 편집하였습니다.

만족스러운 튜닝을 마친 상태라면 오디오 셋팅을 스냅샷으로 저장할 수 있습니다. 이 스냅샷은 오디오 혼합 상태를 저장하고 다양한 사운드 프로필을 생성하여 유용하게 활용 될 수 있습니다.


MECANIM

플레이할 준비가 되었다면 한번 실행해보십시요. 좌 클릭으로 호프(케릭터 이름)를 움직일 수 있습니다. WASD로 카메라를 컨트롤 할 수 있습니다. 이 프로젝트에는 몇몇의 에니메이션이 포함되어있습니다. 하지만, 메카님 API를 이용하면 메카님 에셋을 생성하고 편집할 수 있는 많은 종류의 툴을 만들 수 있습니다.

이 프로젝트에서는, Hope에 사용된 에니메이터를 재생성하는 버튼이 존재합니다. 스크립트는 Project 폴더에 비슷한 에니메이터를 생성합니다. 

[MenuItem ("Hope/Create Controller")]

static void CreateController () {

// Creates the controller

var controller = UnityEditor.Animations.AnimatorController.CreateAnimatorControllerAtPath ("Assets/HopeScriptCtrl.controller");

// Add parameters

controller.AddParameter("Walk", AnimatorControllerParameterType.Bool);

controller.AddParameter("TurnLeft", AnimatorControllerParameterType.Bool);

controller.AddParameter("TurnRight", AnimatorControllerParameterType.Bool);

controller.AddParameter("HalfTurn", AnimatorControllerParameterType.Bool);

// Add StateMachines

var rootStateMachine = controller.layers[0].stateMachine;

var stateMachineStand = rootStateMachine.AddStateMachine("Stand");

// Add States

var stateIdle = stateMachineStand.AddState("Idle");

var stateTurnLeft = stateMachineStand.AddState("TurnLeft");

var stateTurnRight = stateMachineStand.AddState("TurnRight");

var stateHalfTurn = stateMachineStand.AddState("HalfTurn");

var stateWalk = stateMachineStand.AddState("Walk");

stateIdle.motion = AssetDatabase.LoadAssetAtPath("Assets/Animations/Hope Animations/StandingIdleLooking.fbx", typeof(AnimationClip)) as Motion;

stateTurnLeft.motion = AssetDatabase.LoadAssetAtPath("Assets/Animations/Hope Animations/MoveStand90_L.fbx", typeof(AnimationClip)) as Motion;

stateTurnRight.motion = AssetDatabase.LoadAssetAtPath("Assets/Animations/Hope Animations/MoveStand90_R.fbx", typeof(AnimationClip)) as Motion;

stateHalfTurn.motion = AssetDatabase.LoadAssetAtPath("Assets/Animations/Hope Animations/MoveStand180.fbx", typeof(AnimationClip)) as Motion;

stateWalk.motion = AssetDatabase.LoadAssetAtPath("Assets/Animations/Hope Animations/MoveWalk_F.fbx", typeof(AnimationClip)) as Motion;

// Add Transitions

var idle2TurnLeft = stateIdle.AddTransition (stateTurnLeft);

var turnLeft2Idle = stateTurnLeft.AddTransition (stateIdle);

idle2TurnLeft.AddCondition(UnityEditor.Animations.AnimatorConditionMode.If, 0, "TurnLeft");

idle2TurnLeft.duration = 0.025f;

turnLeft2Idle.hasExitTime = true;

turnLeft2Idle.exitTime = 0.85f;

turnLeft2Idle.duration = 0.15f;

var idle2TurnRight = stateIdle.AddTransition (stateTurnRight);

var turnRight2Idle = stateTurnRight.AddTransition (stateIdle);

idle2TurnRight.AddCondition(UnityEditor.Animations.AnimatorConditionMode.If, 0, "TurnRight");

idle2TurnRight.duration = 0.025f;

turnRight2Idle.hasExitTime = true;

turnRight2Idle.exitTime = 0.85f;

turnRight2Idle.duration = 0.15f;

var idle2HalfTurn = stateIdle.AddTransition (stateHalfTurn);

var halfTurn2Idle = stateHalfTurn.AddTransition (stateIdle);

idle2HalfTurn.AddCondition(UnityEditor.Animations.AnimatorConditionMode.If, 0, "HalfTurn");

idle2HalfTurn.duration = 0.025f;

halfTurn2Idle.hasExitTime = true;

halfTurn2Idle.exitTime = 0.85f;

halfTurn2Idle.duration = 0.15f;

var idle2Walk = stateIdle.AddTransition (stateWalk);

var walk2Idle = stateWalk.AddTransition (stateIdle);

idle2Walk.AddCondition(UnityEditor.Animations.AnimatorConditionMode.If, 0, "Walk");

idle2Walk.duration = 0.025f;

walk2Idle.AddCondition(UnityEditor.Animations.AnimatorConditionMode.IfNot, 0, "Walk");

walk2Idle.duration = 0.25f;

}

이 프로젝트가 여러분들께 도움이 되셨길 바랍니다. ( 에셋 스토어 링크 : https://www.assetstore.unity3d.com/en/#!/content/34352?utm_source=unity3d&utm_medium=blog&utm_campaign=ASContent_Camouflaj)


*참고 : 최종 버젼의 게임 비쥬얼은 이 프로젝트와 약간은 달라질 수도 있습니다.



Posted by ozlael
,
336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

본 포스팅은 유니티 공식 블로그의 "Working with Physically Based Shading" a practical approach"를 번역한 것입니다.




유니티5 베타를 사용중이시라면 에셋 스토어에서 바이킹 마을 데모를 다운받아서 확인해보실 수 있습니다. 이 데모에서는 유니티5에서 씬의 조명을 어떻게 구성해야 하는지에 대한 안내를 받을 수 있습니다.


견본 환경 만들기

텍스쳐링과 셰이더 설정을 알맞게 결정하기 위해서는 간단한 신을 다양한 라이팅 셋업으로 테스트해보는 것을 추천합니다. 이는 각기 다른 스카이박스와 라이팅 등 모델의 조명에 연관되는 것 들을 의미합니다. 유니티5를 열면 빈 씬이 기본적으로 절차적으로 생성 된 하늘이 포함 된 것을 확인 가능합니다. 이는 기본 환경광과 반사 셋팅을 포함하고 있습니다. 
템플릿 환경에서는 다음 사항들이 준비되어있어야합니다.
- HDR 카메라 렌더링
- 몇 개의 리플렉션 프로브
- 라이트 프로브의 그룹
- HDR 하늘텍스쳐와 재질(material)들의 셋. 이 프로젝트에 포함된 하늘은 유니티를 위해 커스텀하게 만들어진 것이 사용되었습니다.( 제작자:Dutch Skies 360)
- HDR 하늘 색과 강도가 맞춰진 미색의 방향성 광원(directional light)


스카이 텍스쳐 파라미터 조절

대부분의 하늘 텍스쳐는 이미지 자체에 태양 및 플레어를 포함하고 있습니다. 하지만 이는 다음 이유들로 인해 잠재적인 문제가 됩니다.
- 디렉셔널 라이트의 방향을 잡을 시 텍스쳐에 그려진 태양과 맞춰야만 하는 제약이 생깁니다.
- 강렬한 스페큘라 하이라이트떄문에 반사된 태양과 스페큘러 핫스팟이 겹쳐버립니다. 
- 미리 그려진 태양의 반사가 그림자 영역에서 가려지지 않습니다. 이는 어두운 영역에다 어색한 반짝임을 만들어버립니다.
때문에, 태양의 하이라이트, 플레어, 태양광 및 HDR 값은 하늘 텍스쳐 외부(주로 디렉셔널 라이트)에서 편집되어야합니다. 


물리 기반 셰이딩 재질 

유니티5의 스탠다드 셰이더는 스페큘러 컬러와 메탈릭 워크플로우 둘 다 제공하고 있습니다. 둘 모두 표면에 반사하는 색을 정의하고 있습니다. 스페큘러 워크플로우에서는 색상이 직접적으로 명시됩니다. 반면 메탈릭 워크플로우에서는, 디퓨즈 색상과 메탈릭 값의 조합으로  색상이 만들어집니다. 

에셋 스토어에서 캘리브레이션(Calibration) 씬을 받아보실 수 있습니다. 이 씬은 각종 측정용 차트를 포함하고 있습니다. 바이킹 프로젝트에서는 스페큘러 컬러 워크플로우로 만들어졌는데, 이 차트를 참고하며 진행하였습니다.
스페큘러 워크플로우에서는 반사광의 스페큘러 색상을 직접 선택 할 수 있습니다. 반면 메탈릭 워크플로우에서는 재질이 조명될 때 메탈처럼 작동할 것인지에 대한 선택을 할 수 있습니다. 두 워크플로우 모두 최종적으로는 동일한 결과를 만들어 낼 수 있습니다. 따라서 작업 진행을 스페큘러 워크플로우로 할 것인지 메탈릭 워크 플로우로 할 것인지는 순전히 작업자의 기호에 맞추어 선택하면 됩니다. 

스페큘러 값 차트:

메탈릭 값 차트:


재질 설정하기

재질을 만들 시, 테스트 용도의 깨끗한 재질을 만들어 두면 유용합니다. 이 재질에다 측정용 챠트로부터 색상 등의 값을 적용합니다. 그 후 텍스쳐를 적용한 결과와 비교해보면 재질 본래의 느낌을 확인해볼 수 있습니다.


텍스쳐 제작의 전통적인 방법

바이킹 마을 데모에 쓰인 텍스쳐들은 사진 등의 데이터로부터 스캔한 디퓨즈/알베도, 스페큘러, 노말맵 등을 사용합니다. (제공 : Quixel텍스쳐에 디테일을 추가할 때는 주의할 점이 있습니다. 예를 들자면, 일반적으로는 텍스쳐에 미리 AO나 그림자 등의 라이팅을 적용해서 그려넣기도 합니다. 하지만 물리 기반 렌더링에서는 엔진에서 모든 라이팅을 제공해주기때문에 텍스쳐에 미리 그려넣으면 안됩니다. 사진을 수정하는 작업은 이러한 리터칭이 많이 들어가야해서 PBS 스캐닝 된 데이터보다 부담이 큽니다만 Quixel Suite Allegorithmic Substance Painter를 이용하면 이러한 과줭이 한결 수월해집니다.


스캔 데이터

PBS 대응하여 스캔된 데이터는 편집하기가 좀 더 편합니다. 알베도, 스페큘러, 매끄러움 등이 이미 분리된 데이터이기때문입니다. PBS 데이터를 만들어 주는 소프트웨어가  유니티 프로필에 대응되어있다면 더욱 좋을것입니다. 


재질 예시


바이킹 마을 씬은 많은 적절한 메모리의 텍스쳐를 사용하여 많은 양의 컨텐츠를 나타내고 있습니다. 그 예로 10미터 크기의 나무 크레인 모델을 살펴보겠습니다.


예시 1: 크레인 오브젝트는 2개의 재질을 가집니다. 2개의 디퓨즈 텍스쳐, 1개의 스페큘러-매끄러움 텍스쳐, 2개의 오클루전 텍스쳐, 2개의 디테일 텍스쳐

예시 2: 방패 프랍은 1개의 재질을 가집니다. 1개의 디퓨즈맵 텍스쳐, 1개의 스페큘러(specular)-매끄러움(Smoothness) 텍스쳐, 1개의 오클루전 텍스쳐를 가집니다. 디테일 텍스쳐는 없습니다.

알베도 텍스쳐 : 스페큘러 워크플로우에서는, 알베토 텍스쳐는 표면에 반응하는 디퓨즈 라이트의 색상을 나타냅니다. 왼쪽 이미지 (크레인)에서는 너무 그렇게 높은 디테일을 필요로하지는 않습니다. 반면 오른쪽 텍스쳐 (방패)는 높은 디테일을 포함하고 있습니다.

크레인의 디퓨즈맵은 나무의 색상으로 평범하게 이루어져있습니다. 디테일도 그냥 적당한 정도로만 이루어져있습니다. 반면 오른쪽에 있는 방패의 이미지는 높은 디테일을 가지고 있습니다.

크레인 재질의 디퓨즈 색상 값

스페큘러 : 논-메탈(비전도체)는 비교적 어두운 그레이스케일의 스페큘러 색상을 가집니다. 반면 메탈은 더 밝고 고유 색상을 띄는 스페큘러를 가집니다. ( 녹슬거나 기름때나 먼지가 있는 부분은 메탈릭이 아닙니다.) 

좌측은 메탈을 표현하기 위한 크레인의 스페큘러 맵(메탈릭 셰이더를 사용하지 않음. 스페큘러 워크플로우). 우측은 방패의 스페큘러 텍스쳐

나무의 표면은 전반적으로 스페큘러가 거의 없다시피합니다. 따라서 나무의 스페큘러는 텍스쳐를 사용하는 대신 단순 생삭값으로 대체합니다.

매끄러움(Smoothness)은 PBS 재질의 핵심 속성중 하나입니다. 이는 재질의 상태, 변화, 결점, 디테일 등을 표현하고 물체가 오래되었는 지 등에 대한 시각적인 힌트를 제공해줍니다. 크레인의 경우, 거칠기가 재질 전반적으로 동일하기때문에 따로 텍스쳐로 사용되지 않고 단순한 값으로만 대체될 수 있습니다. 그 덕에 텍스쳐 메모리를 절약할 수 있습니다.


크레인에 있는 나무의 매끄러움. 텍스쳐 대신 단순 값으로 사용함.

메탈의 표현하기 위한 크레인의 매끄러움 맵(메탈릭 셰이더를 사용하지 않음. 스페큘러 워크플로우). 우측 이미지는 방패의 매끄러움 맵을 나타냄. 나무와 메탈 표면이 공존.

오클루전(Occlusion)은 얼마나 표면이 돌출되었는지에 대한 정보를 빛에 반응하여 나타냅니다. 앰비언트 오클루전(Ambient Occlusion)은 표면의 디테일과 높이를 주변광과 반사광 등으로 표현을 해줍니다. SSAO(Screen Space Ambient Occlusion)을 사용하는 것도 염두해두어야합니다. SSAO와 AO를 같이 사용하게되면 배로 어두워지는 경향이 생길 수 있습니다. AO맵으로 크랙이나 접합부 등을 강조하는데 쓰일 수도 있습니다. 게임이 SSAO나 라이트맵의 AO를 쓰는 경우엔 적합한 용도가 될 것입니다.

첫번째 이미지는 라이트맵 AO, 두번째 이미지는 오클루전 텍스쳐, 세번째 이미지는 디퓨즈의 오클루전, 네번째 이미지는 이미지 효과 SSAO를 보여주고 있습니다.



부가 텍스쳐와 해상도


부가(secondary) 텍스쳐는 디테일의 레벨을 증가시켜주거나 재질의 변화를 제공하는데 쓰일 수 있습니다. 디테일 마스크 속성을 사용하는 것으로 마스킹 될 수 있습니다.

크레인의 디퓨즈 텍스쳐는 비교적 낮은 해상도로 이루어져 있습니다. 이러한 경우 부가 텍스쳐로 표면의 디테일을 부여해줄 수 있습니다. 디테일맵은 타일링되어 표면에 전반적으로 반복되어 집니다. 때문에 낮은 해상도로도 높은 디테일을 표현해줘서 메모리를 절약 할 수 있습니다.

부가 알베도맵과 노말맵은 저해상도의 디퓨즈와 노말맵을 보완해줍니다. 아래 이미지는 크레인의 표면 비교. 왼쪽은 부가 텍스쳐 사용. 오른쪽은 사용 안함.


에셋 스토어 링크 : https://www.assetstore.unity3d.com/#!/content/29140




Posted by ozlael
,